ETSITS 102 829 vi1.1.1 (2009-03)

Technical Specification

GRID;
Grid Component Model (GCM);
GCM Fractal Architecture Description Language (ADL)

D

2 ETSI TS 102 829 V1.1.1 (2009-03)

Reference
DTS/GRID-0004-3 GCM_FractalADL

Keywords
architecture, network, interoperability, service

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2009.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™, TIPHON™, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered
for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.
LTE™ is a Trade Mark of ETSI currently being registered
for the benefit of its Members and of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI TS 102 829 V1.1.1 (2009-03)

Contents

INtellectual Property RIGNES.... ..ottt bbb renn e 4
[0 T[0T 4
[T 0 o (UTex (1o o AT TSRO 4
1 o010 PR 5
2 RS = = 6= TP 5
2.1 [NL0 g 0T AV SN (= 1 (10 - F 5
2.2 10 (0 0= AV SR LS (= [0 T 5
3 DEFINItIONS AN ADIEVIBEIONS. ... eeeee it e e eeeee e et e e e e et e e s ee et e s sae et essasreeessasseeessaaseeessaaseeessaaeeesssaeeessaanes 6
31 (DL 1 TR 0] ORI 6
3.2 J N o] o[(< /L= (0] IR 6
4 OVErall SITUCEUINE OF TNE A DL ...ttt ettt et e e et e e e et e eeeeeeaas e eareteeesesas e sneeereeesesansrennreress 7
4.1 PIINCIPIES. ...tttk b b h b b s R bRt h e £ e s e bt b e e b b et bbb ae b et b e 7
411 COMPONENT SITUCLUIE ...ttt ettt ettt ettt st ettt e et e st e st e e sa b e e s abe e shbe e saee e sabeesabeesabeesabeesnbeesnnenan 7
41.2 1S =0T 7
4.1.3 1= 010 0= | PSSR 8
414 ST 0= 1Y/ 01 | R 8
415 Relationship with the Management AP ..ot sre e saeenae e e 8
4.2 COMPONENE AN AEFINITIONoiieceeie e e e te s e e s e sae e teenteenaeesaeeseenteenteeneesneesnnesnes 8
4.3 E L= = o< TR 11
4.4 VITEUBIINOGE. ... ettt et e et e e ettt e e s b et e s e ate e e s eaaeeessbeee s e steessasaseessabesesssseeesassaeasssbenessntenessnsenas 12
4.5 EXPOITEAV ITTUBINOE ...ttt et b e bbb et b et et b e bt eb e b 12
4.6 COMPOSINGVITTUBINOOE ...ttt ettt b bbbt b e et b e et bt 13
4.7 0107011 o TR TSSOSO U TSR P SR PSR 13
4.8 (070] 01 (= | APPSR 13
49 = L] 010 =S 14
4.10 (00011 (o] 1 1= 14
411 (01 7= Y o 15
412 (000]1.011.01< 0| PP 15
Annex A (nor mative): GCM ADL SCNEM@....ceiiiiiiieieeeieeees e 16
Annex B (informative): EXampPles Of ADL FIlES.....cooiiiiiee et 19
B.1 PrimitivVe COMPONENLS......cc.ciieiiitietieitesteeteste et eteste et e tesaeestesbeeaesteebe e besbeesseabesssessesreensesteensensesanensenseens 19
B.2 COMPOSITE COMPONENTSociuiieiitiiteeitecteeie et e teste et s e st e s be e tesbeesaesbesreessesbeeasestesneessesteensensesaeensenneens 20
IR VAT ¢ (0= 10T [TTRR SRR 20
B.4 Component With MUItiCast INLEITACES.........ccvieeci et sne e 21
B.5 Component with gatherCast INtEIfACES.........ccccieiiii et 22
I ST = 1= 0= LY/ Lo LU TR 22
Annex C (informative): Bibliograpny ..o e 23
[11 (TSRO P PPN 24

ETSI

4 ETSI TS 102 829 V1.1.1 (2009-03)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by ETSI Technical Committee GRID (GRID).

The present document is related to documents TS 102 827 [2] (GCM Interoperability Deployment),
TS 102 828 [1] (GCM Interoperability Application Description). It discusses the Fractal ADL, a description language
for software components, based on XML.

Introduction

The GCM has been first defined in the NoE CoreGRID (42 ingtitutions). The GridCOMP EU project (FP6, from
June 2006 to February 2009) is working to further assess and experiment with the specification. A reference Open
Source implementation has been tested in the 4 previous GRID Plugtests organized from 2004 to 2008 by ETSI. The
5th GRID plugtest in 2008 directly referred to the GCM, and was open to any GCM implementation.

In the present document we present alanguage for the description of software components. The GRID component
model (GCM) aims to ease the devel opment, deployment and maintenance of software systems. It is modular,
extensible, and can be used in various programming languages. The main design principle is the separation of interface
and implementation.

The GCM ADL isthe base Architecture Description Language of this model. It is described here, in the form of an
XML schema.

Historically, GCM is an extension of the Fractal component model, which defines an open component model for
component systems, but has a very low support for distributed components.

ETSI

http://webapp.etsi.org/IPR/home.asp

5 ETSI TS 102 829 V1.1.1 (2009-03)

1 Scope

The present document describes an XML based Architecture Description Language (ADL), used to define the
composition of software components in distributed and parallel infrastructures.

The standard will help enterprises and |aboratories to manage large-scale computer and tel ecom infrastructures with the
necessary virtualization.

Its primary audience are grid system developers who need to specify complex applications by composing existing
software components.

2 References

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

o For a specific reference, subsequent revisions do not apply.

. Non-specific reference may be made only to a complete document or a part thereof and only in the following
cases.

- if it isaccepted that it will be possible to use all future changes of the referenced document for the
purposes of the referring document;

- for informative references.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

2.1 Normative references

The following referenced documents are indispensabl e for the application of the present document. For dated
references, only the edition cited applies. For non-specific references, the latest edition of the referenced document
(including any amendments) applies.

[1] ETSI TS 102 828: "GRID; Grid Component Model (GCM); GCM Application Description".
[2] ETSI TS 102 827: "GRID; Grid Component Model (GCM); GCM Interoperability Deployment”.
2.2 Informative references

The following referenced documents are not essentia to the use of the present document but they assist the user with
regard to a particular subject area. For non-specific references, the latest version of the referenced document (including
any amendments) applies.

[i.1] "The Fractal Component Model".

NOTE: Available at http://fractal .objectweb.org/specification/index.html.

[i.2] CoreGrid NoE (FP6): "Basic Features of the Grid Component Model".

NOTE: Available at http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf.

[i.3] GCM: "A Grid extension to Fractal for Autonomous Distributed Components’, F. Baude, D.
Caromel, C. Damasso, M. Danelutto, V. Getov, L. Henrio, C. Perez. Annals of
Telecommunications - The Fractal Initiative, 2008.

ETSI

http://docbox.etsi.org/Reference
http://fractal.objectweb.org/specification/index.html
http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf

6 ETSI TS 102 829 V1.1.1 (2009-03)

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

client interface: component interface that emits operation invocations

component: abstraction of a software entity with a well-defined interface for both server and client parts
component content: is (recursively) made of subcomponents and bindings

component controller: abstract entity that embodies one aspect of a component control : a component controller
manages the component with respect to a given non-functional aspect

component model: specification of how components are defined and interact together

control interface: component interface that manages a ' non functional aspect” of a component, such as introspection,
configuration, and so on

definition: definition isthe root element of a component structure
fractal: modular and extensible component model

functional interface: component interface that correspondsto a provided or required functionality of a component, as
opposed to a control interface

gathercast interface: interface that is able to collect invocations from a set of sources and be plugged to asingle
destination

membrane: control part of acomponent, it is mainly constituted of a set of Component Controllers

multicast interface: interface that is able to transmit a single invocation, coming from a single source, to a set of
destinations

server interface: component interface that receives operation invocations

virtual node: after the deployment of a GCM application, refersto a set of Nodes, which is seen as a single entity

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

ADL Architecture Description Language

API Application Programming Interface

FC2 Format Commun (Version 2)

FIACRE Intermediate Format for the Architectures of Embedded Distributed Components
GCM Grid Component Model

VCE Vercors Component Editor

VN Virtual Node

XML eXtensible Markup Language

ETSI

7 ETSI TS 102 829 V1.1.1 (2009-03)

4 Overall Structure of the ADL

4.1 Principles

The GCM ADL isan extensible language to define component architectures for the GCM component model ([i.2],[i.3]).
It isan extension of the Fractal component model [i.1]. Consequently, the present document can also be considered as a
definition of Fractal's ADL. Elements specific to GCM are the export and composition of virtual nodes, and the
gathercast and multicast cardinalities. The ADL is made of a set of modules, each modul e defining the syntax for an
architectural "aspect" of the language (e.g. interfaces, bindings, attributes, etc.).

4.1.1 Component Structure

The main element of the ADL isthe Component. The most basic component is a primitive component that isa
component entirely implemented in a programming language (typically Java). Primitive components can be combined
into composite components. More generally, a composite component is a component built by aggregating several
components, primitive or composite. Composite components are characterized by the fact that their internal structureis
specified. Primitive components encapsul ate the business code of the application.

When aggregating components into a composite component, the sub-components interfaces are bound one with another
according to their respective nature and role (e.g. a component's provided interface X will be bound another
component's required interface Y). Type compatibility can be required in order to bind together two interfaces.

A component is driven through controllers. Controllers are interfaces as well, but describing actions that are irrelevant
to the component's main functionality. For instance, starting and stopping the component, binding it to another
component, etc. The GCM Management API standardizes many of these controllers. Controllers specify the "non-
functional” features of the components. Crucia controllers alow the introspection, modification of component
structure, and lifecycle control of components.

The current version of the ADL does not allow for having structured controller componentsin the membrane. This
should be standardized in future versions.

Likewise, a component may have attributes, which are key/value pairs that can be used to parameterize the component.

4.1.2 Interfaces

A component's relationship to the "external world" is defined by itsinterfaces. There are two kinds of interfaces, the
ones the component provides ("server" role), and the onesit requires ("client" role). For instance a " calculator"
component may provide an interface consisting of "add", "subtract”, multiply", and "divide", while a " spreadsheet"
component would require a component providing the "calculator” interface to work.

To aserver interface of a composite component, a corresponding internal client interface with the same nameis
automatically generated. Similarly, a client interface of a composite component is automatically associated an internal
server interface. Those interfaces allow the export of interfaces of inner componentsto the outside world, i.e. they are
connected to complementary interfaces of inner components

Interfaces have four possible cardinaities: single, collection, gathercast, or multicast.
A single client interface can be bound to only one server interface.

A collection interface is an interface that will be duplicated severa times at runtime. It can be viewed as an array of
identical interfaces.

A multicast interface allows one-to-many communication patterns. A client multicast interface (possibly internal) can
be plugged to many server interfaces instead of one for a single interface. The dispatch policy for the invocation can be
parameterized. As ADL does not specify internal interfaces, a multicast server interface of a compositeisin fact the
composition of asingle server interface and a multicast internal client interface.

ETSI

8 ETSI TS 102 829 V1.1.1 (2009-03)

A gathercast interface allows many-to-one communication patterns. A server gathercast interface can be bound from
many client interfaces. Contrarily to single interfaces which necessarily transmit as many invocation as they receive,
gathercast interfaces can act as synchronization interfaces (synchronization barriers). The gathering and synchronization
policy for the invocations can be parameterized. As ADL does not specify internal interfaces, a gathercast client
interface of a compositeisin fact the composition of a gathercast internal server interface and asingle client interface.

4.1.3 Deployment

To enable the deployment of components on agrid environment, it is possible to specify the Virtual Node on which the
component will be deployed. Additionally, the ADL can rename and compose virtual nodes of sub-components of a
composite in order to expose different assemblies, and names of virtual nodes at a higher level in the hierarchy.

414 Behaviour

The behaviour element allows specification of the behaviour of a component. This allows using different semantic
formalisms and underlying models to reach similar goals, i.e. to guarantee that components in a composite system
behave smoothly together and respect some user requirements. The <behaviour> element has two forms, depending on
its attributes. It can either point to a file which contains that behaviour's description, or contain the description itself.
The description may be written in any of the supported behaviour specification languages.

4.1.5 Relationship with the Management API

A GCM ADL definition provides a static description of a component architecture. The instantiation into an actual set of
running components is done through the GCM API, by a Factory object: the factory typically receives an ADL from
which it is able to instantiate a component system; the system is created by invoking methods from the GCM
Management API. The GCM API aso provides tools to manipul ate the components at runtime.

4.2 component and definition

The root element of the GCM ADL isthe definition. A definition describes a single component structure. Within it you
can find (among other things) declarations of (sub) components, interfaces, bindings, and virtual nodes.

There can be several components declared in a definition, since a component may be an aggregate of sub-components.
The components themselves can feature the same kind of elements as the definition. The set of elements a component
may contain depends on its type (primitive or composite). The structure of the 'definition’ and ‘component’ elements are
defined in this clause.

Alternatively, a subcomponent within a hierarchy can be defined independently, using the 'definition’ attribute. If the
definition attribute is present, only the 'name’ attribute is required. This mechanism allows for managing libraries of
component definitions, and yields reusability.

Both primitive and composite components are defined with the same XML element type.
The <definition> type has the following attributes:
. name: (string) the name of the component (required);

. arguments. comma-separated list of argument names (optional). The arguments work as variables which
value can be fixed at 1oad time;

. extends: (string) the name of the component which this component extends.
The <component> type has the following attributes:
. name: (string) the name of the component (required);

e definition: (string) the reference to a component (toplevel) ADL definition.

ETSI

9 ETSI TS 102 829 V1.1.1 (2009-03)

The <component> and <definition> types have a so the following child elements:

comment: afree form comment documenting the component (0-unlimited);
interface: the description of the interface the component provides (O-unlimited);
component: reference to a sub-component (0-unlimited);

binding: binding of aclient interface to a server interface (O-unlimited);
content: the class which represents this component (0-1);

attributes: the list of attributes of the component (0-1);

controller: the controller of the component (0-1);

virtualNodes: (sequence of virtualNode elements) the list of virtual nodes this component should be deployed
on (0-1);

exportedVirtualNodes: (sequence of exportedVirtualNode elements) (0-1).

Most often, the content child isrequired for primitive components. By convention, it is also possible for composite
components, for example to define the implementation class of the AttributeController of the component.

As a consequence, a primitive component is characterized by a non-empty ‘content' child, and zero ‘component’ child. A
composite component has at least one ‘component’ child, and possibly one 'content' child.

ETSI

10 ETSI TS 102 829 V1.1.1 (2009-03)

The types of the child elements are defined in detail in the next clauses.

(D definitinnTwejE——@E— comment

0. e

interface
[}

exportedyirtualModes
0.1

1

companent
0. o

hinding
0 e

content
0.1

attributes
0.1

contraller
0.1

hehawior
0.1

wirtualMode
0.1

Figure 1

ETSI

11 ETSI TS 102 829 V1.1.1 (2009-03)

(D tnmpnnemTijE——@E— camment

0. m

intetface
0. o

1

exportedyirtualModes
0.1

COmponent
0o

hinding
0 oo

content
0.1

attributes
0.1

controller
0.1

behawior
0.1

wirtualkode
S

Figure 2

4.3 interface

Interfaces are the outlets which the components can be bound with. Components interfaces are of two kind: 'server', for
interfaces which are offered by the component, and ‘client’, for interfaces which the component requires.

An interface element has the following attributes:
e name: (string) the name of the interface (required);
. role: (‘client’ or 'server’) the role of the interface (required);
e signature: (string) the signature of the interface (optional);
. contingency: (‘mandatory’ or ‘optiona’) (optional);
. cardinality: (‘singleton’, ‘collection’, 'gathercast’, 'multicast’) (optional);

e comment: afree form comment documenting the component (O-unlimited).

ETSI

12 ETSI TS 102 829 V1.1.1 (2009-03)

([l interfaceTywoe ja——@

0 o

Figure 3

4.4 virtualNode

It is possible to specify among virtual nodes of a GCM deployment specification file, which of them should be used for
the deployment of the component. Thisis done through alist of virtualNode elements.

A virtualNode element has no child element, and the following attributes:
. name: (string) the name of the virtual node (required);

. cardinality: (‘'single’ or 'multiple’) the cardinality of the virtual node. 'single’ means the virtual node in the
deployment descriptor should contain one node; 'multiple’ means it should contain more than one node
(required).

(D virtualModeTye j

Figure 4

4.5 exportedVirtualNode

Virtual nodes can be exported and composed. Export and compose allow respectively to rename and merge virtual
nodes. This extends reusability of existing components. When exported, a virtual node can take part in the composition
of other exported virtual nodes.

An exportedVirtual Node element has the following attribute:
. name: (string) the name of the exported Virtual Node (required);

. composedFrom: (sequence of composingVirtualNode elements) (O-unlimited) This element contains a
sequence of elements named composingVirtualNode.

(D exportedyirtualMNodeTywoe j

EI—-—| composedFrom |

Figure 5

ETSI

13 ETSI TS 102 829 V1.1.1 (2009-03)

4.6 composingVirtualNode
A composingVirtualNode el ement has the following attributes:
. component: (string) the component which defines the composing virtual node (required);

. name: (string) the name of the composing virtual node (required).

Figure 6

4.7 binding

Bindings define links between the client interface of a component to the server interface of another component.
A binding element may contain a sequence of elements of type comment. It also has the following attributes:

. client: (string) the name of the client interface from which the binding is made (required);

. server: (string) the name of the server interface to which the binding is made (required).

Camment

0.

(D hindingTye j

Figure 7

4.8 content
A content element may contain a sequence of elements of type comment. It also has the following attributes:
e class: (string) the class implementing the component (required).

Comment

0 m

(|:| ContentTyoe j

Figure 8

ETSI

14 ETSI TS 102 829 V1.1.1 (2009-03)

4.9 attributes

The attributes element has the following child elements:
. comment: (comment type) a comment (O-unlimited);
. attribute: (attribute type) an attribute (0O-unlimited).

An attribute element may also contain a sequence of comments. It also has the following attributes:
. name: (string) the name of the attribute (required);

e value (string) the value of the attribute (required).

([l attributesTywoe :IEI—@

attribute

-

Figure 9

Comment

0 m

(|:| attributeTye j

Figure 10

4.10 controller

A controller element may contain a sequence of comments. It also has the following attributes:
. desc: (string) the name of the component's controller (required).

Camment

0.

(D controllerType j

Figure 11

ETSI

15 ETSI TS 102 829 V1.1.1 (2009-03)

4.11 behaviour

The <behaviour> element cannot have any children. It can have the following attributes:
. language: (string): the specification language used by the behaviour file or value (required);
. file: (string) the path to the behaviour specification file;
e value: (string) the behaviour specification, specified inline.

File and value are mutually exclusive, only one should be specified.

(D t:nehawianypej . @ |anguage

. @ file i@

Figure 12

4.12 comment

A comment element has the following attributes:
. language: (string) the language of the comment's text (required)

e text: (string) the comment itself (required)

([l cormmentType jEI-[@ |anguage l
@text

Figure 13

ETSI

16

ETSI TS 102 829 V1.1.1 (2009-03)

Annex A (normative):
GCM ADL Schema

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" targetNamespace=

xmlns="urn:gcm:adl:1.0" elementFormDefault="qualified" >

<xsd:complexType name="interfaceType">
<xsd:sequence>
<xsd:element name="comment" type="commentType" minOccurs="0"
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"
<xsd:attribute name="role" use="optional"s>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="client"
<xsd:enumeration value="server"
</xsd:restriction>
</xsd:simpleType>
</xsd:attributes>
<xsd:attribute name="signature" type="xsd:string" use="optional"
<xsd:attribute name="contingency" use="optional">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="mandatory" />
<xsd:enumeration value="optional" />
</xsd:restriction>
</xsd:simpleType>
</xsd:attributes>
<xsd:attribute name="cardinality"s>
<xsd:simpleType>
<xsd:restriction base="xsd:string">

/>

/>
/>

<xsd:enumeration value="singleton" />
<xsd:enumeration value="collection" />
<xsd:enumeration value="multicast" />
<xsd:enumeration value="gathercast" />

</xsd:restriction>
</xsd:simpleType>
</xsd:attributes>
</xsd:complexType>

<xsd:complexType name="componentType">
<xsd:sequence>

"urn:gcm:adl:1.0"

maxOccurs="unbounded"

/>

/>

<xsd:element name="comment" type="commentType" minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="interface" type="interfaceType" minOccurs="0" maxOccurs="unbounded"
/>
<xsd:element name="exportedVirtualNodes" type="exportedVirtualNodesType" minOccurs="0"
maxOccurs="1" />
<xsd:element name="component" type="componentType" minOccurs="0" maxOccurs="unbounded"
/>
<xsd:element name="binding" type="bindingType" minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="content" type="contentType" minOccurs="0" maxOccurs="1" />
<xsd:element name="attributes" type="attributesType" minOccurs="0" maxOccurs="1" />
<xsd:element name="controller" type="controllerType" minOccurs="0" maxOccurs="1" />
<xsd:element name="behaviour" type="behaviorType" minOccurs="0" maxOccurs="1" />
<xsd:element name="virtualNode" type="virtualNodeType" minOccurs="0" maxOccurs="1" />
</xsd:sequences>
<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="definition" type="xsd:string" use="optional" />
</xsd:complexType>
<xsd:complexType name="bindingType">
<xsd:sequence>
<xsd:element name="comment" type="commentType" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequences
<xsd:attribute name="client" type="xsd:string" use="required" />
<xsd:attribute name="server" type="xsd:string" use="required" />
</xsd:complexType>
<xsd:complexType name="contentType'">
<xsd:sequence>
<xsd:element name="comment" type="commentType" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequences

ETSI

17 ETSI TS 102 829 V1.1.1 (2009-03)

<xsd:attribute name="class" type="xsd:string" use="required" />
</xsd:complexType>

<xsd:complexType name="attributeType">
<xsd:sequence>
<xsd:element name="comment" type="commentType" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequences>
<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="value" type="xsd:string" use="required" />
</xsd:complexType>

<xsd:complexType name="attributesType">
<xsd:sequence>
<xsd:element name="comment" type="commentType" minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="attribute" type="attributeType" minOccurs="1" maxOccurs="unbounded"
/>
</xsd:sequences>
</xsd:complexType>

<xsd:complexType name="controllerType">
<xsd:sequence>
<xsd:element name="comment" type="commentType" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequences>
<xsd:attribute name="desc" type="xsd:string" use="required" />
</xsd:complexType>

<xsd:complexType name="behaviorType">
<xsd:attribute name="language" type="xsd:string" use="required" />
<xsd:attribute name="file" type="xsd:string" use="required" />
<xsd:attribute name="value" type="xsd:string" use="required" />
</xsd:complexType>

<xsd:complexType name="virtualNodeType">
<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="cardinality">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="single" />
<xsd:enumeration value="multiple" />
</xsd:restriction>
</xsd:simpleType>
</xsd:attributes>
</xsd:complexType>

<xsd:complexType name="exportedVirtualNodesType">
<xsd:sequence>
<xsd:element name="exportedVirtualNode" type="exportedVirtualNodeType" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequences>
</xsd:complexType>

<xsd:complexType name="exportedVirtualNodeType">
<xsd:sequence>
<xsd:element name="composedFrom" type="composedFromType" minOccurs="1" maxOccurs="1" />
</xsd:sequences>
<xsd:attribute name="name" type="xsd:string" use="required" />
</xsd:complexType>

<xsd:complexType name="composedFromType">
<xsd:sequence>
<xsd:element name="composingVirtualNode" type="composingVirtualNodeType" minOccurs="1"
maxOccurs="unbounded" />
</xsd:sequences
</xsd:complexType>

<xsd:complexType name="composingVirtualNodeType">
<xsd:attribute name="component" use="required" />
<xsd:attribute name="name" use="required" />
</xsd:complexType>

<xsd:complexType name="commentType">
<xsd:attribute name="language" type="xsd:string" use="required" />
<xsd:attribute name="text" type="xsd:string" use="required" />
</xsd:complexType>

<xsd:complexType name="definitionType">

ETSI

18 ETSI TS 102 829 V1.1.1 (2009-03)

<xsd:sequence>
<xsd:element name="comment" type="commentType" minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="interface" type="interfaceType" minOccurs="0" maxOccurs="unbounded"
/>
<xsd:element name="exportedVirtualNodes" type="exportedVirtualNodesType" minOccurs="0"
maxOccurs="1" />
<xsd:element name="component" type="componentType" minOccurs="0" maxOccurs="unbounded"
/>
<xsd:element name="binding" type="bindingType" minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="content" type="contentType" minOccurs="0" maxOccurs="1" />
<xsd:element name="attributes" type="attributesType" minOccurs="0" maxOccurs="1" />
<xsd:element name="controller" type="controllerType" minOccurs="0" maxOccurs="1" />
<xsd:element name="behaviour" type="behaviorType" minOccurs="0" maxOccurs="1" />
<xsd:element name="virtualNode" type="virtualNodeType" minOccurs="0" maxOccurs="1" />
</xsd:sequences>
<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="arguments" type="xsd:string" use="optional" />
<xsd:attribute name="extends" type="xsd:string" use="optional" />
</xsd:complexType>

<xsd:element name="definition" type="definitionType" />

</xsd:schemas>

ETSI

19 ETSI TS 102 829 V1.1.1 (2009-03)

Annex B (informative):
Examples of ADL files

We give here an example of ADL description for simple application, together with a graphical representation using
V CE (when applicable). The VCE tool provides agraphical editor for component architecture that imports and exports
ADL compliant with the present document. The graphical elements themselves are not normative.

B.1 Primitive components

A primitive component is defined as a set of required interfaces, a set of provided interfaces, and the class that
implements those provided interfaces.

EXAMPLE:

Clientimpl

<definition name="ClientImpl"s>
<interface name="r" role="server" signature="java.lang.Runnable"/>
<interface name="s" role="client" signature="Service"/>
<content class="ClientImpl"/>
<controller desc="primitive"/>
</definition>

ETSI

20 ETSI TS 102 829 V1.1.1 (2009-03)

B.2 Composite components

A composite components is defined as a set of reguired interfaces, a set of provided interfaces, and references to the
sub-components it contains.

EXAMPLE:

HelloWaorld

client

SEMEN

<definition name="HelloWorld">

<interface name="r" role="server" signature="java.lang.Runnable"/>

<component name="client">
<interface name="r" role="server" signature="java.lang.Runnable"/>
<interface name="s" role="client" signature="Service"/>
<content class="ClientImpl"/>
<controller desc="primitive"/>

</component >

<component name="server">
<interface name="s" role="server" signature="Service"/>
<content class="ServerImpl"/>
<controller desc="primitive"/>

</component >

<binding client="this.r" server="client.r"/>

<binding client="client.s" server="server.s"/>

<controller desc="composite"/>

</definition>

B.3 Virtual nodes

In the following example, from component definitions "c1" and "c2", avirtual-node "client-node" is defined.

EXAMPLE:

<exportedVirtualNodes>

<exportedVirtualNode name="client-node">
<composingVirtualNode component="cl" name="clientl" />
<composingVirtualNode component="c2" name="client2" />
<exportedVirtualNode>

</exportedVirtualNodes>

ETSI

21 ETSI TS 102 829 V1.1.1 (2009-03)

B.4 Component with multicast interfaces

Multicast interfaces provide abstractions for one-to-many communication. A single invocation on a multicast interface
istransformed into a set of invocations. Multicast interfaces are defined in the ADL by using the 'multicast' cardinality
in an interface definition.

The behaviour of a multicast interface (argument handling, scattering, broadcasting, etc. and return val ues collecting)
will be defined at API level.

Masterslave

Slawve

Master

.- ‘Q’—C—-%l—
Funner { Slawve?

B
2

<definition name="org.objectweb.proactive.examples.components.userguide.adl.Composite">
<interface signature="org.objectweb.proactive.examples.components.userguide.Runner" role="server"
name="runner"/>
<component name="Master"
definition="org.objectweb.proactive.examples.components.userguide.adl.Master"/>
<component name="Slavel"
definition="org.objectweb.proactive.examples.components.userguide.adl.Slave"/>
<component name="Slavel2"
definition="org.objectweb.proactive.examples.components.userguide.adl.Slave"/>
<binding client="this.runner" server="Master.runner"/>
<binding client="Master.il" server="Slavel.il"/>
<binding client="Master.il" server="Slave2.il"/>
<binding client="Master.i2" server="Slavel.i2"/>
<controller desc="composite"/>
</definition>

<definition name="org.objectweb.proactive.examples.components.userguide.adl.Slave">

<interface signature="org.objectweb.proactive.examples.components.userguide.Itfl" role="server"
name="1i1"/>

<interface signature="org.objectweb.proactive.examples.components.userguide.Itf2" role="server"
name="i2"/>

<content class="org.objectweb.proactive.examples.components.userguide.SlaveImpl"/>
<controller desc="primitive"/>
</definition>

<definition name="org.objectweb.proactive.examples.components.userguide.adl.Master">

<interface signature="org.objectweb.proactive.examples.components.userguide.Runner" role="server"
name="runner"/>

<interface signature="org.objectweb.proactive.examples.components.userguide.ItflMulticast"
role="client" name="1i1" cardinality="multicast"/>

<interface signature="org.objectweb.proactive.examples.components.userguide.Itf2" role="client"
name="1i2"/>

<content class="org.objectweb.proactive.examples.components.userguide.MasterImpl"/>
<controller desc="primitive"/>

ETSI

22 ETSI TS 102 829 V1.1.1 (2009-03)

</definitions>

B.5 Component with gathercast interfaces

Gathercast interfaces are the counterpart of multicast interface, they are abstractions for many-to-one communication.
Their behaviour is symmetrical to the one of multicast interfaces. A gathercast interface coordinates incoming
invocations before continuing the invocation flow, then return val ues are redistributed to the invoking components.
Gathercast interfaces are defined in the ADL by using the 'gathercast’ cardinality in an interface definition.

B.6 Behaviour

The Behaviour element is used to attach a behaviour specification to a component. The intended use isto check
compatibility of component assemblies at a dynamic level (protocol compatibility), without knowing the
implementation of the component (black-box specification).

The behaviour specification is to be written in an external file. Reading thisfile requires a specific parser. Example of
behaviour languages currently used are: 'fc2', 'lotos), 'behaviour-protocol’, 'fiacre'.

EXAMPLE:

<component name="client">
<interface name="r" role="server" signature="java.lang.Runnable"/>
<interface name="s" role="client" signature="Service"/>

<behaviour language="lotos" file="client.lotos">

</component >

ETSI

23 ETSI TS 102 829 V1.1.1 (2009-03)

Annex C (informative):
Bibliography
. "A formal specification of the Fractal component model”.

NOTE: Available at http://hal.inria.fr/inria-00338987/.

. Francoise Baude, Denis Caromel, Ludovic Henrio and Matthieu Morel: " Collective Interfaces for Distributed
Components' - proceedings of CCGrid 2007.

. CoreGrid Network of excellence: Deliverable D.PM.02: "Proposals for a Grid Component Model".

NOTE: Available at http://www.coregrid.net/mambo/content/view/428/292/.

. CoreGrid Network of excellence: Deliverable D.PM.0Q7: "Innovative Features of GCM (with sample case
studies): a Technical Survey".

. CoreGrid Network of excellence: Deliverable D.STE.05: "Design of the Integrated Toolkit with Supporting
Mediator Components”.

o Macigj Malawski, Marian Bubak, Francoise Baude, Denis Caromel, Ludovic Henrio, and Matthieu More:
"Interoperability of grid component models: GCM and CCA case study" - Towards Next Generation Grids:
Proceedings of the CoreGRID Symposium, August 2007. Springer.

. Antonio Cansado, Ludovic Henrio, Eric Madelaine: "Towards real case Model-checking: an extension to
Fractal ADL", 5t Fractal Workshop, Nantes, 2006.

. The Syntax enad Semantics of FIACRE.

NOTE: Available at http://www.laas.fr/~bernard/fiacre/.

. GridComp project: http://gridcomp.ercim.org/ and GridComp use-cases:
http://gridcomp.ercim.org/content/view/41/39/.

. ETSI Grid PlugTests

NOTE: Available at http://www.etsi.org/plugtests GRI D2008/GRID.htm.

ETSI

http://hal.inria.fr/inria-00338987/
http://www.coregrid.net/mambo/content/view/428/292/
http://www.laas.fr/~bernard/fiacre/
http://gridcomp.ercim.org/
http://gridcomp.ercim.org/content/view/41/39/
http://www.etsi.org/plugtests/GRID2008/GRID.htm

24

ETSI TS 102 829 V1.1.1 (2009-03)

History

Document history

V111

March 2009

Publication

ETSI

	Intellectual Property Rights
	Foreword
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Overall Structure of the ADL
	4.1 Principles
	4.1.1 Component Structure
	4.1.2 Interfaces
	4.1.3 Deployment
	4.1.4 Behaviour
	4.1.5 Relationship with the Management API

	4.2 component and definition
	4.3 interface
	4.4 virtualNode
	4.5 exportedVirtualNode
	4.6 composingVirtualNode
	4.7 binding
	4.8 content
	4.9 attributes
	4.10 controller
	4.11 behaviour
	4.12 comment

	Annex A (normative): GCM ADL Schema
	Annex B (informative): Examples of ADL files
	B.1 Primitive components
	B.2 Composite components
	B.3 Virtual nodes
	B.4 Component with multicast interfaces
	B.5 Component with gathercast interfaces
	B.6 Behaviour

	Annex C (informative): Bibliography
	History

